143 research outputs found

    Research and Implement of an Algorithm for Physical Topology Automatic Discovery in Switched Ethernet

    Get PDF
    AbstractIn this paper, a novel practical algorithmic solution for automatic discovering the physical topology of switched Ethernet was proposed. Our algorithm collects standard SNMP MIB information that is widely supported in modern IP networks and then builds the physical topology of the active network. We described the relative definitions, system model and proved the correctness of the algorithm. Practically, the algorithm was implemented in our visualization network monitoring system. We also presented the main steps of the algorithm, core codes and running results on the lab network. The experimental results clearly validate our approach, demonstrating that our algorithm is simple and effective which can discover the accurate up-to-date physical network topology

    Antiferromagnetic to Ferrimagnetic Phase Transition and Possible Phase Coexistence in Polar Magnets (Fe1−x_{1-x}Mnx_x)2_2Mo3_3O8_8

    Full text link
    In the present work, magnetic properties of single crystal (Fe1−x_{1-x}Mnx_x)2_2Mo3_3O8_8 (0<x<10<x<1) have been studied by performing extensive measurements. A detailed magnetic phase diagram is built up, in which antiferromagnetic state dominates for x<0.25x<0.25 and ferrimagnetic phase arises for x>0.3x>0.3. Meanwhile, sizeable electric polarization of spin origin is commonly observed in all samples, no matter what the magnetic state is. For the samples hosting a ferrimagnetic state, square-like magnetic hysteresis loops are revealed, while the remnant magnetization and coercive field can be tuned drastically by simply varying the Mn-content or temperature. Possible coexistence of the antiferromagnetic and ferrimagnetic phases is proposed to be responsible for the remarkable modulation of magnetic properties in the samples

    Case Report: A Novel COL1A1 Missense Mutation Associated With Dentineogenesis Imperfecta Type I

    Get PDF
    Background: Osteogenesis imperfecta (OI) is a clinical and genetic disorder that results in bone fragility, blue sclerae and dentineogenesis imperfecta (DGI), which is mainly caused by a mutation in the COL1A1 or COL1A2 genes, which encode type I procollagen.Case Report: A missense mutation (c.1463G &gt; C) in exon 22 of the COL1A1 gene was found using whole-exome sequencing. However, the cases reported herein only exhibited a clinical DGI-I phenotype. There were no cases of bone disease or any other common abnormal symptom caused by a COL1A1 mutation. In addition, the ultrastructural analysis of the tooth affected with non-syndromic DGI-I showed that the abnormal dentine was accompanied by the disruption of odontoblast polarization, a reduced number of odontoblasts, a reduction in hardness and elasticity, and the loss of dentinal tubules, suggesting a severe developmental disorder. We also investigated the odontoblast differentiation ability using dental pulp stem cells (DPSCs) that were isolated from a patient with DGI-I and cultured. Stem cells isolated from patients with DGI-I are important to elucidate their pathogenesis and underlying mechanisms to develop regenerative therapies.Conclusion: This study can provide new insights into the phenotype-genotype association in collagen-associated diseases and improve the clinical diagnosis of OI/DGI-I

    Genome-wide identification, characterization, evolution and expression analysis of the DIR gene family in potato (Solanum tuberosum)

    Get PDF
    The dirigent (DIR) gene is a key player in environmental stress response and has been identified in many multidimensional tube plant species. However, there are few studies on the StDIR gene in potato. In this study, we used genome-wide identification to identify 31 StDIR genes in potato. Among the 12 potato chromosomes, the StDIR gene was distributed on 11 chromosomes, among which the third chromosome did not have a family member, while the tenth chromosome had the most members with 11 members. 22 of the 31 StDIRs had a classical DIR gene structure, with one exon and no intron. The conserved DIR domain accounts for most of the proteins in the 27 StDIRs. The structure of the StDIR gene was analyzed and ten different motifs were detected. The StDIR gene was divided into three groups according to its phylogenetic relationship, and 22 duplicate genes were identified. In addition, four kinds of cis-acting elements were detected in all 31 StDIR promoter regions, most of which were associated with biotic and abiotic stress. The findings demonstrated that the StDIR gene exhibited specific responses to cold stress, salt stress, ABA, and drought stress. This study provides new candidate genes for improving potato’s resistance to stress

    Low-intensity focused ultrasound targeted microbubble destruction reduces tumor blood supply and sensitizes anti-PD-L1 immunotherapy

    Get PDF
    Immune checkpoint blockade (ICB) typified by anti-PD-1/PD-L1 antibodies as a revolutionary treatment for solid malignancies has been limited to a subset of patients due to poor immunogenicity and inadequate T cell infiltration. Unfortunately, no effective strategies combined with ICB therapy are available to overcome low therapeutic efficiency and severe side effects. Ultrasound-targeted microbubble destruction (UTMD) is an effective and safe technique holding the promise to decrease tumor blood perfusion and activate anti-tumor immune response based on the cavitation effect. Herein, we demonstrated a novel combinatorial therapeutic modality combining low-intensity focused ultrasound-targeted microbubble destruction (LIFU-TMD) with PD-L1 blockade. LIFU-TMD caused the rupture of abnormal blood vessels to deplete tumor blood perfusion and induced the tumor microenvironment (TME) transformation to sensitize anti-PD-L1 immunotherapy, which markedly inhibited 4T1 breast cancer’s growth in mice. We discovered immunogenic cell death (ICD) in a portion of cells induced by the cavitation effect from LIFU-TMD, characterized by the increased expression of calreticulin (CRT) on the tumor cell surface. Additionally, flow cytometry revealed substantially higher levels of dendritic cells (DCs) and CD8+ T cells in draining lymph nodes and tumor tissue, as induced by pro-inflammatory molecules like IL-12 and TNF-α. These suggest that LIFU-TMD as a simple, effective, and safe treatment option provides a clinically translatable strategy for enhancing ICB therapy

    Sialic Acid-Targeted Biointerface Materials and Bio-Applications

    No full text
    Sialic acids (SAs) are typically found as terminal monosaccharides attached to cell surface glycoconjugates, which play crucial roles in various biological processes, and aberrant sialylation is closely associated with many diseases, particularly cancers. As SAs are overexpressed in tumor-associated glycoproteins, the recognition and specific binding of SA are crucial for monitoring, analyzing and controlling cancer cells, which would have a considerable impact on diagnostic and therapeutic application. However, both effective and selective recognition of SA on the cancer cell surface remains challenging. In recent years, SA-targeted biointerface materials have attracted great attention in various bio-applications, including cancer detection and imaging, drug delivery for cancer therapy and sialylated glycopeptide separation or enrichment. This review provides an overview of recent advances in SA-targeted biointerface materials and related bio-applications
    • …
    corecore